De-Identification of Confidential Health Data: Principles, Methods and Policy

Balancing Privacy Protection with Scientific Accuracy:
Challenges for De-identification Practice

Daniel C. Barth-Jones, M.P.H., Ph.D
Assistant Professor of Clinical Epidemiology,
Mailman School of Public Health
Columbia University
Identification Spectrum

- Protected Health Information (PHI)
- Limited Data Set (LDS) §164.514(e)
 - Eliminate 16 Direct Identifiers (Name, Address, SSN, etc.)
- LDS w/o 5-digit Zip & Date of Birth (LDS-“Breach Safe”) 8/24/09 FedReg
 - Eliminate 16 Direct Identifiers and Zip5, DoB
- Safe Harbor De-identified Data Set (SHDDS) §164.514(b)(2)
 - Eliminate 18 Identifiers (including Geo < 3 digit Zip, All Dates except Yr)
- Statistically De-identified Data Sets (SDDS) §164.514(b)(1)
 - Verified “very small” Risk of Re-identification
The Inconvenient Truth:

Trade-Off between Information Quality and Privacy Protection

Ideal Situation (Perfect Information & Perfect Protection)
Unfortunately, not achievable due to mathematical constraints

Poor Privacy Protection

Optimal Precision, Lack of Bias

Disclosure Protection

Complete Protection

No Protection

No Information

Information

Bad Decisions / Bad Science
Advantages of De-identification for “Secondary” Research

– Promise of richer clinical detail from EMRs and more complete representativeness of patient populations following healthcare reform

– Observational Biases associated with Authorization/Consent Process

 • Avoidance of Selection and Information Biases related to Opt-In vs. Opt-out issues on consent

 • Note: We typically need at least some basic demographic information on excluded patients to conduct sensitivity analyses and adjustment for potential biases -this is often the same data that may be obscured for purposes of privacy protection
Inadequacies of Safe Harbor De-identification

■ Challenging in complex data sets
 – Safe Harbor rules prohibiting Unique codes (§164.514(2)(i)(R)) unless they are not “derived from or related to information about the individual” (§164.514(c)(1)) can create significant complications for:
 ■ Preserving referential integrity in relational databases
 ■ Creating longitudinal de-identified data

■ Encryption does not equal de-identification
 – Encryption of PHI, rather than its removal - as required under safe harbor, will not necessarily result in de-identification

■ Not suitable for “Data Masking”
 – Removal requirement in 164.514(b)(2)(i)
 – Software development requires realistic “fake” data which can pose re-identification risks if not properly managed
Statistically De-identified Data Sets (SDDSSs)

- *Statistical De-identification* often can be used to release some of the safe harbor “prohibited identifiers” provided that the risk of re-identification is “very small”.

- For example, more detailed *geography, dates of service* or *encryption* codes could possibly be used within statistical de-identified data based on statistical disclosure analyses showing that the risks are very small.

- However, disclosure analyses must be conducted to assess risks of re-identification

 (e.g., encrypted data with strong statistical associations to unencrypted data can pose important re-identification risks)
HIPAA Statistical De-identification Conditions

■ “Risk is very small...”

— “that the information could be used”...

— “alone or in combination with other reasonably available information”...,

— “by an anticipated recipient”...

— “to identify an individual”...
Information Explosion -
Rapid Increase in Publically Available Data

- Any information which is a “matter of public record” or “reasonably available” along with actual identifiers should be considered a quasi-identifier under the HIPAA definition for statistical de-identification.

- The amount of data that will need to be considered “reasonably available” quasi-identifiers should only be expected to increase due to the dramatic expansion of public records which are freely available via the internet or inexpensively purchased data from marketing data vendors.
Essential Re-identification Concepts

- Essential Re-identification and Statistical Disclosure Concepts
 - Record Linkage
 - Linkage Keys (Quasi-identifiers)
 - Sample Uniques and Population Uniques

- Straightforward Methods for Controlling Re-identification Risk
 - Decreasing Uniques:
 - by Reducing Key Resolutions
 - by Increasing Reporting Population Sizes

- Understanding challenges for reporting geographies
Record Linkage

Record Linkage is achieved by matching records in separate data sets that have a common “Key” or set of data fields.

Population Register (w/ IDs)
(e.g. Voter Registration)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Gender</th>
<th>Age (YoB)</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Age (YoB)</td>
<td>Dx Codes</td>
<td>Px Codes</td>
<td>…</td>
</tr>
</tbody>
</table>

Sample Data file

Identifiers

Quasi-Identifiers (Keys)

Revealed Data
Quasi-identifiers

While individual fields may not be identifying by themselves, the contents of several fields in combination may be sufficient to result in identification, the set of fields in the Key is called the **set of Quasi-identifiers**.

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Gender</th>
<th>Age</th>
<th>Ethnic Group</th>
<th>Marital Status</th>
<th>Geography</th>
</tr>
</thead>
</table>

^------- Quasi-identifiers -------^

Fields that should be considered part of a **Quasi-identifier** are those variables which would be likely to exist in “reasonably available” data sets along with actual identifiers (names, etc.).

Note that this includes even fields that are not “PHI”.

11
Key Resolution

Key “resolution” increases with:

1) the number of matching fields available

2) the level of detail within these fields. (e.g. Age in Years versus complete Birth Date: Month, Day, Year)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Gender</th>
<th>Full DoB</th>
<th>Ethnic Group</th>
<th>Marital Status</th>
<th>Geography</th>
<th>Dx Codes</th>
<th>Px Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample and Population Uniques

- When only one person with a particular set of characteristics exists within a given data set (typically referred to as the *sample* data set), such an individual is referred to as a “*Sample Unique*”.

- When only one person with a particular set of characteristics exists within the entire population or *within a defined area*, such an individual is referred to as a “*Population Unique*”.
Measuring Disclosure Risks

- Sample Records (Healthcare Data Set)
- Population Records (e.g., Voter Registration List)
- Sample Uniques
- Potential Links
- Population Uniques

Population
Records
(e.g.,
Voter Registration
List)
Linkage Risks

Only records that are unique in the sample and the population are at clear risk of being identified with exact linkage.

Records that are not unique in the sample cannot be unique in the population and, thus, aren’t at definitive risk of being identified.

Records that are unique in the sample but which aren’t unique in the population, would match with more than one record in the population, and only have a probability of being identified.

Records that are not in the sample also aren’t at risk of being identified.
We can determine the Sample Uniques quite easily from the sample data.

For many characteristics, the likelihood of Population Uniqueness can be estimated from statistical models of the US Census data.

Links / Sample Records indicates the risk of record linkage.
Reducing Disclosure Risks

- A large number of methods have been developed to reduce re-identification risks.

- These methods range widely in their statistical sophistication and complexity.

- As a practical issue, many of the more sophisticated methods are also quite logistically complicated to implement in frequently updated data sets (i.e., data streams).

- Most of these more sophisticated disclosure control methods involve distorting the original data in order to reduce the re-identification risks while also preserving the statistical utility of the data.
Reducing Disclosure Risks

- Application of distortion based methods in frequently updated data sets is non-trivial, and, therefore, typically expensive and logistically complicated to implement, requiring complex data management operations to assure proper application.

- Because of such logistic complications, the two simplest methods for reducing disclosure risks are also the most practical when protecting privacy in data streams.

- The two most basic methods of reducing disclosure risks involve:
 - Reducing Key Resolution
 - Increasing Reporting Unit Populations
Basic Solutions: *Reducing Key Resolutions*

- Reducing *Key Resolution* will both reduce the proportion of Sample Uniques in the data set (or data stream) and the probability that an individual is Population Unique with regard to the re-identification key.

- Key Resolution can be reduced either by:
 - Reducing the number of Quasi-identifiers that are released (i.e., restrict number of variables reported),
 - Reducing the number of categories or values within a Quasi-Identifier (e.g., report Year of Birth rather than complete birth date).
Challenge: “Family Key” Attacks

- Challenge: Data intruders could use “family keys” (i.e., insurance subscriber/member relationships) to create high resolution re-identification keys for household.

- Example: Using only Zip Code, Age (in years) and Gender, a five member family in zip code 20336 with the following age and gender data:
 - Male, 56 Years Old
 - Female, 53 Years Old
 - Female, 22 Years Old
 - Female, 19 Years Old
 - Male, 18 Years Old

 would yield the following re-identification key:

 “20336M56F53F22F19M18”
Basic Solutions: *Increasing the Population Sizes of Geographic Reporting Units*

- Another easily implemented solution for reducing disclosure risks is simply to impose a requirement for minimum population sizes within any geographic reporting units.

- Example: the Safe Harbor provision specifies that the only geographic units smaller than the State that are reportable under safe harbor de-identification are 3-digit Zip Codes containing populations of more than 20,000 individuals.

- However, statistical disclosure *risk analyses should be conducted* in order to assure that appropriate thresholds have been selected and that these thresholds will result in very small disclosure risks *for the specific key resolutions* of the set of variables which are to be reported.
Basic Solutions:
Increasing Sizes of Reporting Units, cont’d.

- Using larger population sizes for geographic reporting areas is an important method of controlling disclosure risks because increasing the reporting population size decreases the probability of an individual being unique within the reporting area and, thus, the risk of re-identification.

- Ideally, any method for restricting the reporting of geographic information should allow reporting on all (or most) of the population, but the level of geographic resolution would be scaled to the underlying population density to control disclosure risks.
Preventing Identification with **Geographic Censoring** and **Masking**

- **Geographic Censoring** refers to preventing identification by not reporting data from individuals within those areas with high disclosure risks.
 - Obviously, geographic censoring is preferable only when the populations requiring censoring are very small.

- **Geographic Masking** refers to preventing identification by modifying the original geographic reporting areas.
 - The simplest method of geographic masking is to combine or aggregate geographic units with high re-identification risks into larger population units.
Challenge: Subtraction Geography (i.e., Geographical Differencing)

- **Challenge**: Data recipients often request reporting on more than one geography (e.g., both State and 3 digit Zip code).

- *Subtraction Geography* creates disclosure risk problems when more than one geography is reported for the same area and the geographies overlap.

- Also called *geographical differencing*, this problem occurs when the multiple overlapping geographies are used to reveal smaller areas for re-identification searches.
There are 7 CBSAs in Ohio which Cross into 4 Border States
Challenge: “Geoproxy” Attacks

Challenge: Data intruders can use Geographic Information Systems (GIS) to determine the likely locations of patients from the locations of their healthcare providers

- Retail Pharmacy Locations
- Physician or Healthcare Provider Locations
- Hospital Locations

Geoproxy attacks have become much easier to conduct using newly available tools (e.g., Web 2.0 mapping “Mash-up” technology) *on the internet.*
Challenge: **Geoproxy Attacks**

Example: Patient location as revealed within data set, but further narrowed to probable “hotspots” by using healthcare provider location data.
Challenge:
Geoproxy Attacks
Challenge: **Geoproxy Attacks**

Directional (Standard Deviation Ellipse) distributions and “Hot Spot” analysis (Z-score color coding zip codes for Getis-Ord Gi* statistics)
Challenge: Geoproxy Attacks

<table>
<thead>
<tr>
<th>ZCTA3</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>68,890</td>
</tr>
<tr>
<td>251</td>
<td>80,077</td>
</tr>
<tr>
<td>252</td>
<td>55,954</td>
</tr>
<tr>
<td>253</td>
<td>121,609</td>
</tr>
</tbody>
</table>

ZCTA3 252 is highly dispersed.

The complexity of 3-digit Zip Code Geography amplifies the threat of Geoproxy attacks.
Challenge: Geoproyx Attacks

<table>
<thead>
<tr>
<th>Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>46,076</td>
</tr>
<tr>
<td>B</td>
<td>4,754</td>
</tr>
<tr>
<td>C</td>
<td>1,254</td>
</tr>
<tr>
<td>D</td>
<td>768</td>
</tr>
<tr>
<td>E</td>
<td>242</td>
</tr>
<tr>
<td>F</td>
<td>1,581</td>
</tr>
<tr>
<td>G</td>
<td>649</td>
</tr>
<tr>
<td>H</td>
<td>447</td>
</tr>
<tr>
<td>I</td>
<td>183</td>
</tr>
</tbody>
</table>

ZCTA3 252

North Carolina

Gauley River Natl Rec

Charleston
Challenge: Geoproyxy Attacks

Safe Harbor recoding specification to “000” for populations < 20,000 can inadvertently reveal the 3-digit Zip Codes that are meant to be protected.
Challenge: Geo-isolation Attacks

ZCTA: 90290
Population=5,418
Topanga, CA
“Mountain Bound”

ZCTA: 92661
Population=4,276
Newport Beach, “Barrier Island”

ZCTA: 90704
Population=3,696
Avalon, Santa Catalina Island
“Water Barrier”
Misconceptions about HIPAA De-identified Data:

“*It doesn’t work...*” “easy, cheap, powerful re-identification” (Ohm, 2009 “Broken Promises of Privacy”)

Pre-HIPAA Re-identification Risks {Zip5, Birth date, Gender} Able to identify 87% - 63% of US Population (Sweeney, 2000, Golle, 2006)

- **Reality:** HIPAA compliant de-identification provides important privacy protections
 - Safe harbor re-identification risks have been more recently estimated at 0.04% (4 in 10,000) (Sweeney, NCVHS Testimony, 2007)
 - **Safe Harbor** de-identification provides protections that have been estimated to be a minimum of 400 to 1000 times more protective of privacy than permitting direct PHI access. (Benitez & Malin, JAMIA, 2010)

- **Reality:** Under HIPAA de-identification requirements, re-identification is expensive and time-consuming to conduct, requires serious computer/mathematical skills, is rarely successful, and uncertain as to whether it has actually succeeded
Misconceptions about HIPAA De-identified Data:

“It works perfectly and permanently...”

Reality:

- Perfect de-identification is not possible
- De-identifying does not free data from all possible subsequent privacy concerns
- Data is never permanently “de-identified”... (There is no guarantee that de-identified data will remain de-identified regardless of what you do to it after it is de-identified.)
- Simply collapsing your coding categories until the data is “k-anonymous” can make the data unsuitable for many statistical analyses
Myth of the “Perfect Population Register” and importance of “Data Divergence”

- The critical part of re-identification efforts that is virtually never tested by disclosure scientists is the assumption of a perfect population register.

- Probabilistic record linkage has some capacity deal with errors and inconsistencies in the linking data between the sample and the population caused by “data divergence”:
 - Time dynamics in the variables (e.g. changing Zip Codes when individuals move),
 - Missing and Incomplete data and
 - Keystroke or other coding errors in either dataset,

- But the links created by probabilistic record linkage are subject to uncertainty. The data intruder is never really certain that the correct persons have been re-identified.
Successful Solutions:

Balancing Disclosure Risk and Statistical Accuracy

- When appropriately implemented, statistical de-identification seeks to protect and balance two vitally important societal interests:
 - 1) Protection of the privacy of individuals in healthcare data sets, (Disclosure or Identification Risk), and
 - 2) Preserving the utility and accuracy of statistical analyses performed with de-identified data (Loss of Information).

- Limiting disclosure inevitably reduces the quality of statistical information to some degree, but the appropriate disclosure control methods result in small information losses while substantially reducing identifiability.
Balancing Disclosure Risk/Statistical Accuracy

- Balancing disclosure risks and statistical accuracy is essential because some popular de-identification methods (e.g., k-anonymity) can unnecessarily, and often undetectably, degrade the accuracy of de-identified data for multivariate statistical analyses or data mining (distorting variance-covariance matrixes, masking heterogeneous sub-groups which have been collapsed in generalization protections).

- This problem is well-understood by statisticians and computer scientists, but not as well recognized and integrated within public policy.

- Poorly conducted de-identification can lead to “bad science” and “bad decisions”.

Reference: “On k-Anonymity and the Curse of Dimensionality” by C. Aggarwal
Balancing Disclosure Risk/Statistical Accuracy

U.S. Census Public Use Microdata Sample (PUMS)
Re-identification Risks in Context:

The Statistical De-identification provision’s “very small” risk threshold should take into account the entire data release context, including assessment of:

– The anticipated recipients and the technical, physical and administrative safeguards and agreements that help to assure that re-identification attempts will be unlikely, detectable and unsuccessful,

– The motivations, costs, effort required and necessary skills required to undertake a re-identification attempt.
Principles for SDDS Management and Contracts

- The position that de-identified data needs no regulation whatsoever may not be realistic:

- It is worth considering conditions for de-identified data sets, that would be as consistent as possible with the data stewardship principles established in the LDS data use agreement.

- Should remain consistent with:
 1) the allowance that de-identified data can be used for any purpose and
 2) the reality that by the time a data set has reached the state of de-identification, it frequently contains data from so many CE(s) that it would not be logistically feasible for the recipients of an SDDS to be able to contact CE(s).
Suggested Conditions for De-identified Data

Recipients of De-identified Data should be required to:

1) Not re-identify, or attempt to re-identify, or allow to be re-identified, any patients or individuals who are the subject of Protected Health Information within the data, or their relatives, family or household members.

2) Not link any other data elements to the data without obtaining determination that the data remains de-identified.

3) Implement and maintain appropriate data security and privacy policies, procedures and associated physical, technical and administrative safeguards to assure that it is accessed only by authorized personnel and will remain de-identified.

4) Assure that all personnel or parties with access to the data agree to abide by all of the foregoing conditions.
The Path Forward...

- Properly de-identified health data is an *invaluable “public good”*. The broad availability of de-identified data is an essential tool for society supporting scientific innovation and health system improvement and efficiency.

- De-identified data does and can serve as the *engine driving forward innumerable essential health systems improvements*: quality improvement, health systems planning, healthcare fraud, waste and abuse detection, and medical/public health research (e.g. comparative effectiveness research, adverse drug event monitoring, patient safety improvements and reducing health disparities).

- De-identified health data *greatly benefits our society and provides strong privacy protections for the individuals*. As the promise of EHRs and Health IT yields richer de-identified clinical data, the progress of our nation’s healthcare reform will likely be built on a foundation of such de-identified health data.
Solutions... Practical and Visionary

- **De-identification offers practical solutions for preserving valuable Date and Geographic Information**

- **The broad availability of de-identified data is an essential tool supporting scientific innovation and health system improvement and efficiency.**

- De-identified data serves as the **engine driving forward innumerable essential health systems improvements**: quality improvement, health systems planning, healthcare fraud, waste and abuse detection, and medical/public health research (e.g. comparative effectiveness research, adverse drug event monitoring, patient safety improvements and reducing health disparities).

- De-identified health data **greatly benefits our society while providing strong privacy protections for individuals.**
Reserve Slides for Questions
§164.514(b)(2)(i) -18 Safe Harbor Exclusion Elements

All of the following must be removed in order for the information to be considered de-identified.

(2)(i) The following identifiers of the individual or of relatives, employers, or household members of the individual, are removed:

(A) Names;

(B) All geographic subdivisions smaller than a State, including street address, city, county, precinct, zip code, and their equivalent geocodes, except for the initial three digits of a zip code if, according to the current publicly available data from the Bureau of the Census: (1) The geographic unit formed by combining all zip codes with the same three initial digits contains more than 20,000 people; and (2) The initial three digits of a zip code for all such geographic units containing 20,000 or fewer people is changed to 000.

(C) All elements of dates (except year) for dates directly related to an individual, including birth date, admission date, discharge date, date of death; and all ages over 89 and all elements of dates (including year) indicative of such age, except that such ages and elements may be aggregated into a single category of age 90 or older;

(D) Telephone numbers;

(E) Fax numbers;

(F) Electronic mail addresses;

(G) Social security numbers;

(H) Medical record numbers;

(I) Health plan beneficiary numbers;

(J) Account numbers;

(K) Certificate/license numbers;

(L) Vehicle identifiers and serial numbers, including license plate numbers;

(M) Device identifiers and serial numbers;

(N) Web Universal Resource Locators (URLs);

(O) Internet Protocol (IP) address numbers;

(P) Biometric identifiers, including finger and voice prints;

(Q) Full face photographic images and any comparable images; and

(R) Any other unique identifying number, characteristic, or code except as permitted in §164.514(c) and..
Safe Harbor Continued..., and §164.514(c)

§164.514(b)(2)(ii) The covered entity does not have actual knowledge that the information could be used alone or in combination with other information to identify an individual who is a subject of the information.

§164.514(c) A covered entity may assign a code or other means of record identification to allow information de-identified under this section to be re-identified by the covered entity, provided that:

(1) Derivation. The code or other means of record identification is not derived from or related to information about the individual and is not otherwise capable of being translated so as to identify the individual; and

(2) Security. The covered entity does not use or disclose the code or other means of record identification for any other purpose, and does not disclose the mechanism for re-identification.
HIPAA §164.514(b)(1) “Statistical De-identification”

Health Information is not individually identifiable if:

A person with appropriate knowledge of and experience with generally accepted statistical and scientific principles and methods for rendering information not individually identifiable:

(i) Applying such principles and methods, determines that the risk is very small that the information could be used, alone or in combination with other reasonably available information, by an anticipated recipient to identify an individual who is a subject of the information; and (ii) Documents the methods and results of the analysis that justify such determination;
Follow-Up Reference on U.S. Census PUMS Issues

- Available at: http://bpp.wharton.upenn.edu/betseys/papers/Inaccurate%20Age%20and%20Sex%20Data%20in%20Census%20PUMS%20Files.pdf